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Abstract 

The internet promises ad hoc availability of any kind of information. Conflict researchers are 

seemingly only bound by the effort needed to find and extract the information from interna-

tional news sources, which have become available at a fingertip. This begs the question 

whether the sheer number of accessible news sources and the speed of the news cycle dictate 

an automated coding approach in order to keep up? Will the initial costs of implementing such 

a system outweigh the possible loss of information? We answer these questions for the "Event 

Data on Conflict and Security" project (EDACS)1 and carry out both human and machine as-

sisted coding to generate temporal and spatial disaggregated event data for armed conflicts. In 

this pilot, we compare both approaches in a quantitative analysis and qualitatively by using 

spatial-temporal comparability measures. While the quality of human-coding exceeds a pure 

automated approach, a compromise between efficiency and quality results in a supervised 

semi-automated machine learning approach. We conclude by critically reflecting on the pos-

sible discrepancies in the analysis of these resulting datasets. 

 

Keywords: Conflict Event Data, Machine Coding, Space-Time-Comparability, Data Quality. 

 

1. Introduction 

Spatially and temporally disaggregated event data has become the backbone of quantitative 

conflict science literature. A growing number of georeferenced datasets provides the neces-

sary information on violent incidences in armed conflict (Chojnacki et al., 2012, Dulic, 2010, 

Melander and Sundberg, 2011, Raleigh et al., 2010). These spatiotemporal disaggregated da-

tasets enable researchers to analyze variations of violence in time and space (cf. Buhaug, 

2010, Raleigh, et al., 2010, Weidmann et al., 2010). 
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The Event Data on Conflict and Security project (EDACS) builds up and maintains 

one of these datasets. EDACS focuses on violence in areas of limited or failed statehood. The 

dataset enfolds seven countries of Sub-Saharan Africa (Burundi, Democratic Republic Congo, 

Liberia, Republic of the Congo, Rwanda, Sierra Leone, and Somalia) between 1990 and 2009. 

While this effort is currently being finalized, it took years and several thousands of working 

hours to complete the process. One of the most time consuming and error-prone phases of the 

data generation is the step of data transformation or “coding” (cf. Chojnacki, et al., 2012), 

which has been an almost entirely manual task. The rise in numbers and increased availability 

of news sources over the internet raises the question whether the sheer number of accessible 

news sources and the speed of the news cycle dictate an automated coding approach in order 

to keep up? Will the initial cost of implementing such a system outweigh the possible loss of 

information? Will such as system be able to achieve the necessary degree of data quality? 

Based on these questions we carry out an experiment using a machine learning to gen-

erate spatial and temporal disaggregated event data of the armed conflict in Sierra Leone in 

the year 1999 and compare the resulting dataset with human-coded event data. In the first part 

we describe the Event Data on Conflict and Security project (EDACS) and refer to why com-

puter-supported natural language processing is relevant to conflict event data projects and 

how we implemented our ML-based approach. 

In the second part we will discuss this experiment, frame our comparative approach by 

discussing the experimental design, the costs originating from the two different approaches, 

the level of data comparability, and the overall pros and cons of machine- and human-coding. 

Furthermore we briefly present the methods to perform a stepwise comparison of machine 

learning and human-coded conflict event data along their spatial and temporal attributes. We 

therefore firstly analyze the time series in both datasets, in search for similar trends. Secondly 

we map and compare the spatial distribution of the two datasets and thirdly we apply spatio-
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temporal-k-functions and plot matching events defined by a narrow spatiotemporal threshold, 

which is based on a SQL-query combined with the results of a spatiotemporal cluster analysis. 

In order to understand the task at hand, we begin by outlying the corner stone’s of EDACS, its 

goal, scope, and core definitions. 

2. Transformation of News Articles into Conflict Event Data 

The transformation of natural language to structured event data requires a thorough conceptu-

alization in order for the resulting database to achieve relevance. Any data project also has to 

know the inherent challenges of the data generation process. We will begin by explaining the 

concepts behind EDACS and other data projects, then touch on the subject of data quality in 

the field of conflict research and explain two crucial steps of the data generation process, the 

selection of source documents and subsequent extraction of events. 

2.1 Conceptualization of Conflict Event Data 

In EDACS, the basic unit of analysis is an event, defined as a violent incident with at least 

one fatality resulting from the direct use of armed force. Events are coded with their location 

(name of location, longitude and latitude coordinates) and timeframe (start and end date in 

case of events lasting more than one day). Among others, the type of military action (fighting2 

or diverse forms of one-sided violence3) is coded in EDACS, as well as the involved violent 

or non-violent actors and details on (civilian and military) fatalities. Events can be based on 

one or several news sources. For each event, the names and publication dates of all news arti-

cles used are indicated. Beyond that, EDACS-coders mark an article as “biased” if its infor-

mation originates from a source directly connected to a violent actor involved in the respec-

tive event. 

EDACS is built on information retrieved from newspaper articles. These articles are 

gathered from the Lexis-Nexis news portal. EDACS is based on a set of four predefined 
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sources or media outlets that are used for all coded countries and years of observation. The 

archives of three international newspapers (The Guardian, New York Times, and Washington 

Post) and the broad collection of translated local news reports by BBC Monitoring are 

searched by keywords through the news portal. In case of inconsistent information or missing 

data on one of EDACS central variables (location and timeframe of event), the four mandato-

ry sources are supplemented by other sources such as other news services (trust.org/alertnet, 

irinnews.org, crisisgroup.org, humansecuritygateway.com), and regional internet gateways 

(allafrica.com, africa-confidential.com, reliefweb.int). 

Each news article found by the search engine is read by EDACS-coders who extract 

the relevant information and enter it into a data entry form. In order to ensure inter-

subjectivity and data consistency, a set of strict and conservative coding rules has been devel-

oped. Additionally, all data is coded and double-checked by two different coders and cross-

checked by a supervising coder (cf. Fig. 1 – Human Coding Workflow).  

(Figure 1 about here) 

Events are localized with longitude and latitude coordinates (WGS 84) using the toponymic 

GEOnet Names Server (GNS) provided and maintained by the US National Geospatial-

Intelligence Agency (NGA, 2011).4 GNS-data is an extensive settlement dataset, which is 

easily accessible at no charge. In case of imprecise (“between town A and town B”) or am-

biguous (duplicate location names in the GNS-data) indications of event locations in a prima-

ry sources, EDACS-coders consult additional map data such as GoogleEarth or Harvard’s 

AfricaMap and/or apply a variety of standardized buffer rules.5 

EDACS differs from other semi-automated georeferenced conflict event data projects, 

like the Armed Conflict Location and Events Dataset (ACLED), by its stricter event defini-

tion. Among others the number and type of fatalities as well as the involved violent or non-

violent actors is coded in EDACS.6 EDACS covers, unlike the Uppsala Conflict Data Program 
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Georeferenced Events Dataset (UCDP-GED), events with unknown actor participation and 

includes actors and dyads not surpassing the UCDP-GED-threshold of 25 conflict-related fa-

talities per year (Melander and Sundberg, 2011). Thereby EDACS provides on the one hand a 

more comprehensive view on patterns of violence in the observed countries factoring in all, 

also unidentified actors, but on the other hand UCDP-GED data may be more reliable because 

only events with clearly identifiable actors, that surpass the 25 fatality threshold, which might 

be more relevant to the armed conflict as such, are considered (Chojnacki, et al., 2012). 

2.2 Challenges to Data Quality 

Event data projects, like EDACS, face in general four categories of challenges to data quality: 

firstly errors and bias contained in the source (news) or secondly the auxiliary data (maps, 

etc.) and faults in the processes of transformation of source data into event data (misinterpre-

tation, oversights, etc.) or thirdly in the contextualization of the events using auxiliary data 

(event localization, actor identification, etc.) (Chojnacki, et al., 2012). 

While machine coding techniques could, in theory, be used to address each of these 

challenges, we are evaluating how automated source selection and data transformation im-

pacts data quality. When measuring data quality, we will consider the aspects: completeness, 

accuracy, consistency, and relevancy (Batini and Scannapieca, 2006: 40, Thion-Goasdoué et 

al., 2007). 

For instance, machine coding can improve speed of the coding process and thereby in-

crease the completeness of the resulting data. Machine coding may be susceptible to errors 

contained in the auxiliary data and possible faults in the processes of spatiotemporal contextu-

alization. Fuzzy specification of locations in the sources can deteriorate the performance of 

any geocoding approach (Pasley et al., 2007) just as ambiguous location names (ambiguous 

toponyms) can (Clough, 2005, Leidner, 2007).  
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Furthermore, while machine coding aims at improving on the accuracy and consisten-

cy of the transformation of raw text into structured data, results can be very misleading. Al-

ready in 2003, King and Lowe experiment with machine coding of events, or event extraction 

using the proprietary software provided by Virtual Research Associates, Inc. called VRA-

Reader (King and Lowe, 2003). Although “virtually identical” accuracy of machine coding to 

human coding was reported, upon closer examination, the results were very mixed: a high 

precision of 93% was accompanied by also a false positive rate of 77%, i.e. 77% of sources 

were wrongly classified as containing an event (King and Lowe, 2003: 632). Using an unfil-

tered corpus of documents, their approach would result in vast amounts of false data and 

would eventually render any automated coding result useless if applied to other event data 

projects. A further downside to using proprietary software for this purpose is that it may de-

crease openness of the resulting database and deteriorate reliability, as argued by (Kauffmann, 

2008: 108). 

Today, almost all data projects such as ACLED, Minorities at Risk, or UCDP either 

rely on manually coded data, or use simple lists and lookup mechanisms for data generation 

(Nardulli et al., 2011: 10). But adaptive ML techniques have shown to outperform static natu-

ral language processing (NLP) approaches in particular when facing “noisy” data such as 

news reports in the conflict domain (Carlson et al., 2009, Sarwagi, 2007). Due to this finding 

and the progress in NLP, some event data projects such as the Integrated Crisis Early Warning 

System (ICEWS) (Schrodt, 2011) and the Social Political and Economic Events Database 

project (SPEED) project (Nardulli, et al., 2011) are currently making the transition to adaptive 

NLP-based event extraction techniques. While ICEWS has not yet documented any results of 

their transition from the static, rule-based NLP software Textual Analysis By Augmented Re-

placement Instructions (TABARI) to a new system, SPEED has already implemented a sys-

tem to identify possibly relevant articles and uses NLP to find proper nouns in text to help 
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coders identify participating actors or location names. An adaptive, custom trained, NLP addi-

tion to the system is under development. In this case study for EDACS, we have implemented 

and completed a similar system that goes this one step further and makes use of artificial in-

telligence to learn how to identify and distinguish between actors, casualties and locations, 

and directly annotate news articles. To prevent the system from generating too many false 

positives and reduce overall workload, it is necessary to preselect or filter the relevant from 

the irrelevant source documents. 

2.3 Filtering the Filters 

In the context of conflict research, it can be argued that to achieve a certain level of represent-

ativeness is equivalent to a high degree of completeness or relevancy: “a sample of even 5% 

of [real] events would not be problematic if it were truly representative” (Earl et al., 2004). 

Thus to have a variety of databases of the same subject of investigation is a clear advantage, 

as it enables us to compare analysis across datasets (Chojnacki, et al., 2012). We will there-

fore compare between two different sets of sources:  

The first is retrieved by a simple keyword search of the LexisNexis archive and re-

stricted to four different media outlets (The Guardian, The New York Times, and The Wash-

ington Post and the broad collection of translated local news reports by BBC Monitoring). 

The sources are then manually processed in their entirety and in chronological order.  

Secondly, we repeat the retrieval but lift the restriction on the media outlets. From this 

roughly five times larger array of sources, we use a machine learning (ML) approach to select 

a sample of the sources for event extraction. We expect that both approaches’ results share 

some similarity if either method achieves to generate a database of a certain degree of com-

pleteness and relevancy. 

The second approach aims to classify the sources and choose which documents are 

relevant to the subject of interest. In contrast to projects like UCDP who use a static approach 
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of VRA (Gleditsch et al., 2002, Harbom and Wallensteen, 2009) we employ an active, adap-

tive approach, that learns over time to select the right documents to the user. We aim to dras-

tically reduce the number of documents that have to be reviewed manually. Adaptive docu-

ment classification has become common and can be found in everyday email clients but has, 

only recently, also been applied in this field by (Nardulli, et al., 2011). Instead of finding 

events, the aim is to select, or classify, the documents that are either unrelated or relevant to 

the conflict to allow researchers to understand the dynamics of the armed conflict in Sierra 

Leone. A subset of these articles contains the conflict events. In order to do so, we pair two 

different models, naive Bayes and boosted decision trees to perform the candidate selection.7 

Classifiers based on ML algorithms need so-called “features” as input, normally a pre-

selection of words, grammatical attributes or similar. As feature selection in text classification 

tasks often delivers varying outcomes (Kim et al., 2006: 1460), we employ a straightforward 

bag-of-words approach, without filtering out of common words (stop-word approach) or lin-

guistic transformation such as stemming. Initially, as there is no trained model yet, random 

articles are selected from the documents. Beginning with the second coding session, models 

are trained from the documents that are discarded or used by the users at each start. The next 

possible candidate for event extraction is then selected from these documents. 

2.4 Event Extraction 

We complement the automated document classification with a method for ML based event 

extraction. In the section above we explained how, on a document level, classifiers are trained 

to select documents of interest from a large set of source documents, our corpus. In addition 

to this, we use ML on an event level, and use sequence labeling to identify phrases that signi-

fy an event according to the EDACS definition and the related entities such as actors, time 

and place. 
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Requirement for an event in the definition of the EDACS project are casualties from a 

violent event. Inspired by (Banko et al., 2008) we create a sequence tagger that performs as a 

casualty extractor and identifies phrases in which casualties are mentioned. The underlying 

model is based on conditional random fields as the model has proven to be highly efficient, 

although the calculation needed is central processing unit (CPU) intensive.8 After each coding 

session, a new, updated model is trained incorporating the new training data into the model 

(see Fig. 1 – Machine Assisted Coding). 

We employ the same approach to the identification of phrases denoting actors, loca-

tions and dates. While there may be proper nouns, there are also composite names, such as 

“Liberian rebels” or more general locations such as “the border”. The proper nouns may be 

found using existing, pre-trained taggers, but the common nouns are normally not found as 

they are usually not part of the training data used to train the model. Furthermore, they are 

application domain specific. In a further step to support the annotation process, we combine 

both: a pre-trained tagger to identify actors and location names in text and a custom tagger 

that is trained using the annotations provided by the pre-trained tagger combined with the 

manually revised annotations to recognize these specific forms of actors and location names. 

Inspired by Stanford’s approach to sequence tagging for named entity recognition (Finkel et 

al., 2005) and the conclusions drawn for our casualty extractor we use LingPipe’s implemen-

tation for the custom tagger and pair it with Stanford’s tagger, whose pre-compiled model 

achieved f-scores9 of 86% on the 2003 corpus used at the Conference on Computational Natu-

ral Language Learning (Finkel, 2007, Finkel, et al., 2005). While sequence taggers can in 

principal be used to identify relationships occurring in sequences of words (Banko, et al., 

2008), in this context, related entities do not necessarily appear in the same sequence, but may 

be sentences apart. When manually extracting events, relations become implicit when the user 

enters event by event. When annotating text, we have to explicitly define relations. We com-
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bine the sequence labeling approach outlined above with an idea by (Ahn, 2006) and use the 

“anchor” phrases provided by the casualty tagger for ML-supported relation extraction. 

Drawing upon all the entities and phrases identified above, the relation extractor clas-

sifies the relationships between these annotations. As per design, a casualty phrase forms the 

anchor of the event. This reduces the complexity of the task by evaluating all relationships 

between the entities in a text and a particular casualty phrase instead of all possible combina-

tions. The relations are extracted as a binary classification task, using a maximum entropy 

classifier. An actor, a location or a date is either related to the event in question, or not. 

2.5 Exemplary Workflow 

First, the system iterates through all articles until one of the document classifiers identifies a 

candidate article. The program automatically executes the sequence taggers to identify possi-

ble casualty phrases, and entities such as locations and dates in the text. The example text in 

figure 2 contains three incidents. 

The first is an attack by rebels of the Revolutionary United Front (RUF). The casual-

ties, our event anchor, are identified correctly. It therefore also meets the minimum criterion 

of one casualty and is a valid target for event extraction. Two other incidents are mentioned, 

the second is the beginning of an offensive by forces of the Economic Community of West-

African States Monitoring Group (ECOMOG) and the third inauguration of a new Chief of 

National Security. Both are not related to the first event and not events themselves according 

to the definition used here and therefore not to be extracted. 

Second, the user reviews the tags presented and corrects all annotations that relate to 

the event accordingly. This is necessary, as even well trained annotators have shown to intro-

duce a “very high” number of spurious instances (Giuliano et al., 2007). This could adversely 

affect any further steps, in our case the following relationship classification. The text high-

lights are updated in a different highlight style accordingly. 
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Third, the user runs the relation classifier to determine which annotations are related. 

Lastly, the user reviews if the relation classifier performs its task correctly. In the given ex-

ample, it performs without error. If necessary, the user adds or removes relations where ap-

propriate using a context menu. After finishing an article, the program selects the next candi-

date article for annotation. All annotations are stored by a open-source software library, 

Apache’s Unstructured Information Management Architecture (UIMA) that uses the open 

standard XML (The Apache Software Foundation, 2010). 

(Figure 2 about here) 

After this data transformation of free text to semi-structured data we use a simplified, auto-

mated version of our data contextualization procedure. We automatically geocode location 

names (toponyms) and set coordinates by performing a lookup in the GNS-database (see Fig. 

1 – Machine Assisted Coding). The software also deduces dates from temporal descriptions 

and meta-information such as the publication date using a small set of rules. The results are 

used as an ad-hoc set of data for comparison with our set of reference data, a subset of our 

manually generated and twice reviewed EDACS database. 
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3. Evaluation 

Event extraction based on ML has already proven to be a useful application of artificial intel-

ligence. The central question is, whether the effort to apply this technique to the domain of 

conflict research can be justified. We answer this question in the context of the EDACS pro-

ject by a simple experiment that enables us to compare the events with the EDACS-dataset, 

which has been extracted, geocoded and proofed twofold – all manually. 

First, we evaluate the performance of our approach in several dimensions: we look at 

the document classification approach by recoding the numbers of correctly identified relevant 

and irrelevant articles per session. Next, we evaluate the performance of the overall system by 

recoding the time needed to extract the resulting set of events. Finally, we investigate the re-

sulting data quality more closely by measuring temporal and spatial similarity of the two da-

tasets. But firstly, we will outline the approach of our experiment. 

3.1 Experimental Setup 

For the purposes of this experiment, we restrict the scope of our sources to the year 1999 and 

extract only events for the case of Sierra Leone. For the machine learning approach we re-

trieve 7,000 articles from all English language sources in the LexisNexis-archive for Sierra 

Leone 1999, based on a simple keyword search. For the manual approach, EDACS originally 

retrieved 1,200 articles from the four media outlets. As there is no training data in the begin-

ning, i.e. extracted events, the software can only rely on pre-existing models that allow high-

lighting of actor names, locations and dates, but the software cannot yet identify common 

nouns as actor names, casualties, and relations, nor distinguish between relevant and irrele-

vant documents. Each session provides new training data, which the machine learning algo-

rithm uses to create a mathematical model that is used by the software to present the user with 

the next candidate document, highlighting the identified phrases of relevance. 
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The participating coders are experts in manual coding but completely unfamiliar with 

machine-assisted coding and receive minimal training beforehand. In order to be spatially 

comparable to the human-coded EDACS-data we ask one of them to review the automatically 

assigned coordinates, as the geographic database used contains ambiguous entries. We also 

restrict the comparison to events with exactly specified dates and settlements only. 

3.2 Cost Evaluation 

One crucial, limiting element for all research is the available budgeting. The cost generated 

within projects can truncate primal objectives strongly and especially data projects depend – 

in particular whilst their set-up phase – on a sufficient budget. The budget limits the targeted 

coding project dimensions (number of coded cases and years, etc.) or possible retrospective 

refinements of project design and coding rules. 

We exemplify the actual cost of coding for the case of Sierra Leone 1999 – comparing 

approximate human-coding costs with the costs of machine learning. We chose Sierra Leone 

1999 because it equates an “average” swaying conflict year, with phases of escalation and 

de-escalation. 

The cost originated from the two different approaches can be divided into four major catego-

ries: Facilities, Development, Coders, and Output (resp. number of events over time).The fa-

cilities and development cover: building occupancy expenses, office equipment, purchase of 

computers and software, providing a database server (for remote coding and centralized ac-

cess); setup of a database, programming of a data entry form, etc., and development of the 

overall coding rules – what we subsume under facilities and development – is hard to quanti-

fy. The costs for facilities provided partly by the Collaborate Research Center 700 and the 

EDACS project amount roughly to 58,500 USD. The money and time spent on setting up the 

database and the first version of the data entry form only total to about 2123 USD. Further 
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development costs, including the salary of at least two research fellows (for five years) in-

crease the expenses to about 320,579 USD. 

In the case of machine learning, most of these costs also accumulate, but the crucial 

difference certainly is the specialized knowledge to implement such a system. There are no 

out-of-the-box solutions for ML-based event extraction which makes a custom development 

necessary. In this case, the actual software development of our prototype alone took up to half 

a year, while to develop a full-fledged “classic” database and entry form software system took 

roughly 160 hours. Overhead such as planning, research etc. is not included in these figures. 

The costs of coding mostly depend on the research assistants’ salary (in the case of 

EDACS 14.39 USD/hour), which equals about 120 read news article pages per hour; for Sier-

ra Leone 1999, consisting of 1,442 pages for the four sources used within EDACS, this makes 

up to 172.92 USD. The ML approach in comparison only requires about 66 percent the work-

ing hours, and thereby is roughly 115.28 USD cheaper. One has to bear in mind, that every 

coded year has its own characteristics with regard to conflict dynamics and news coverage. 

Therefore the number of events per source fluctuates immensely. Still, the experiment spans 

about only 0.8 percent of the entire source data for the EDACS project. In a rough total, the 

ML approach could save more than 14,000 USD or 974 hours of manual work. 

The generated output resp. the number of coded events per hour is unequal, whereas 

the human coders needed 12 hours for accomplishing the first round of coding, the prototype 

ML-coding only required two-thirds of the time. But this prototypical comparison is only fea-

sible because the datasets contain differing details. The human-coded dataset offers more in-

formation but also requires a second round of coding. The lack in detail is further mitigated by 

the fact that the prototype ML approach does not identify duplicate events, every event is au-

tomatically annotated and then manually revised; the gross increase in event coded per hour 

of the ML approach compared to manual event coding was 156 percent. 
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3.3 Performance Evaluation 

A prerequisite for efficient event extraction is to reduce source corpora to manageable sizes. 

Restricting the source articles to four media outlets and those with certain keywords accom-

plishes this task barely. About 3.2 percent of the articles are used by EDACS for event extrac-

tion in the case of Sierra Leone. Over 95 percent, thousands of articles per country have to be 

scanned and discarded manually. A fully automated event extraction approach used on an 

unfiltered corpus would lead to large amounts of false positives. By introducing a document 

classifier the number of documents used for extraction is reduced significantly. For the year 

1999, a year with relatively intense fighting, about 90 percent of articles had to be discarded 

manually in the manual coding. When using the document classifier approach, on average, 

about 40 percent of articles selected by the classifier were deemed relevant by the human cod-

er and half of those contained an event. Although we used a simple and fast classification 

method, and applied it to a corpus seven times as large as during our manual efforts, the ratio 

of events per document doubled on average. This decreases the overall workload as fewer 

documents have to be scanned manually to reach the same number of events. Figure 3 shows 

how the classifier improves over time beginning with session one; after a random subset of 

documents is manually processed and used as initial training data. Shown is the ratio how 

documents deemed relevant to all documents presented to the coder, in comparison to the 

manual coding displayed here as an average. During the manual extraction of events, in aver-

age 89 percent of the documents are discarded (the lower, continuous line). Due to the low 

amount of training data the algorithm achieved only 17 percent at first, but improved signifi-

cantly over time, averaging 43 percent overall. 

(Figure 3 about here) 
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Similar to the document classifier, event extraction started in session zero at minimal capaci-

ty. Random articles were reviewed and coded into events, if appropriate. On average, only 

three events were coded per hours, similar to the manual method. Already in the next session, 

where document classification preselected news articles and the taggers highlighted actors, 

locations, dates and casualties, the number increased to 8.4 events per hour. The coders aver-

aged 9.4 events per hour. Accounting for duplicates, 5.2 unique events were coded per hour. 

This is an increase of 50 percent in comparison to the 3.67 unique events a trained and experi-

enced coder codes manually. Pictured below is the performance of the human – machine tan-

dem, a learning curve clearly visible. 

(Figure 4 about here) 

In summary, the overall throughput has greatly increased. The gross increase is 156 percent. If 

the system also achieves similar quality to the manual approach has yet to be determined. We 

will analyze and compare the data from a temporal, a spatial and a joint spatiotemporal per-

spective to determine whether there are similar trends and distributions.  

3.4 Data Quality Evaluation 

Spatiotemporal precision is the key aspect for any quantitative conflict analysis based on 

georeferenced conflict event data. There is no gold standard of conflict event data we can re-

fer to, which is why we evaluate the spatiotemporal precision of the machine learning dataset, 

and thereby its data quality, in relative terms by comparing it to the manually generated 

EDACS dataset. Below we measure the similarity of both datasets temporally, spatially, and 

spatiotemporally. 

3.4.1 Temporal Comparison 

The coding of the exact date of a violent event is a challenging task, due to the fact that in 53 

percent of human-coded events no exact date is provided by the source itself and only approx-
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imate information is available (e.g. “two weeks ago”, “over the last few days”, …). In addi-

tion to imprecise temporal information regarding the circumstance of events, a substantial 

number of events are reported as aggregates (e.g. “over the course of the last two weeks”) and 

some sources give no temporal information at all. For comparative reasons we exclude the 

aggregated10 events or events without any clear indicated date. 

To measure temporal (dis-)similarity quantitatively the violent events are - in the fur-

ther course - aggregated into weekly sums and in a first step, charted in a time series graph for 

descriptive analysis. In a subsequent analytical step we calculate the Granger-causality and 

the cross-correlation between the two time series. 

(Figure 5 about here)11 

The overall frequency, the number of events detected per time window seems, except for two 

substantive peaks in January and May 1999, mostly unison (see Fig. 5). Both peaks must be 

understood in the context of the historical events of the Sierra Leone Civil War. The escala-

tion of violence at the turn of the years is rooted in a push of the rebels to retake Freetown, in 

January 1999 they overran most of the city whereas, and the drop to zero events per week in 

May can be attributed to the ceasefire agreement between the forces of President Kabbah and 

the Revolutionary United Front that took effect on May 24th and finally led to the Lomé 

Peace Accord (United Nations, 1999, United Nations, 2000). 

(Figure 6 about here) 

In order to control for trending in the data we detrend the data and perform seasonal adjust-

ments. The detrended data, shown in figure 6, points to the fact that both datasets capture the 

main conflict developments, but appear to have slightly varying characteristics. On basis of 

the detrended data we calculate the Cross-Correlation-Function estimation (ccf12). The ccf-

time series analysis shows positive, significant values. Especially the zero lag does signifi-
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cantly correlate (see Fig. 7), that allows the conclusion that there is a strong temporal resem-

blance. 

(Figure 7 about here) 

The results of a Granger-causality-test of the two weekly aggregated, detrended and seasonali-

ty adjusted datasets show a highly correlated reciprocal effect (human-coded > machine learn-

ing [0.0582*]; machine learning > human-coded [0.0101**]). The Granger-causality suggests 

the finding that an increasing number of coded events at time t(-1), in both datasets, positively 

affect the number of events at time t(0) (Granger, 1969). This also supports the view that both 

datasets do comprise a similar temporal trend. 

3.4.2 Spatial Distribution 

The spatial distribution of machine learning and human-coded data is utilized to evaluate their 

similarity purely within the spatial dimension. The overall spatial distribution (see Fig. 8) un-

derlines the first impression gained by the temporal comparison and also seems to resemble 

the general course of events outlined above. The events of both datasets concentrate in the 

western part of Sierra Leone, but there are at least two distinct locations in each of the da-

tasets which deviate from this pattern. Near Magburka are human-coded events present but 

machine learning events missing and in Kenema it is the other way around. 

(Figure 8 about here) 

Additionally to the cartographic mapping we also run Ripley’s K clustering for spatial pro-

cesses. The Ripley estimator summarizes spatial dependence (clustering or dispersion) over a 

range of distances and displays changes of the spatial dependence with regard to neighbor-

hood size. Therefore the average number of neighboring events throughout the study area, 

evaluated with regard to their specific distance to one another, is compared to each events 

neighborhood and either considered clustered or disperse (ESRI, 2011). We are simulating 
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outer boundary values to correct for boundary effects, which can lead to an underestimation 

due to the number of neighbors for features near the edges of the study area of Sierra Leone 

(the simulated points are the duplicated points near the edges), and calculating 99 permuta-

tions for the confidence envelopes (ESRI, 2011). 

First differences between the spatial clustering characteristics machine learning and 

human-coded data becomes visible. The machine learning data clusters gradually, decreasing 

with the increase in distance, whereas the human-coded event data clusters stronger locally, 

declines and finally levels after about 37 km distance (cf. Bivand and Gebhardt, 2000, Ripley, 

1976, Rowlingson and Diggle, 1993). This suggests that the machine learning data is less 

clustered - especially on the local level - than the human-coded event data. The reason for that 

might be, beside a higher degree of spatial dispersion of the machine learning events, their 

smaller number. 

3.4.3 Spatiotemporal Distance 

Both spatial and temporal analysis of the conflict event data gathered can only provide a par-

tial picture of the actual data resemblance. Therefore we finally use three different spatiotem-

poral analysis approaches to evaluate the overlap between machine learning and human-coded 

data: Firstly by comparison of the spatiotemporal K-function; secondly by spatiotemporal 

permutation Scan-statistics, and thirdly via SQL-based spatiotemporal similarity matching 

queries. 

3.4.4 Spatiotemporal K-function 

We start with the space-time K-function (stK). The space-time K-function estimates the extent 

of space-time clustering as a function of spatial and temporal separation based on second-

order properties of a general stationary, homogeneous spatial-temporal Poisson point process. 

The space-time K-function is closely related to the Knox’s statistic and tests the null hypothe-

sis of no spatial and temporal interaction. Basis for the test is the theoretical intensity of the 
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expected number of events per spatial location and time unit and the observed number of 

points within a space-time cylinder centered on the event (for further information see: Cressie 

and Wikle, 2011: 210, Diggle et al., 1995: 125ff., Gabriel and Diggle, 2009: 45). 

(Figure 9 about here) 

The space-time interaction of the two datasets shows a high degree of similarity (see Fig. 9), 

whereas for the purely spatial cluster analysis (see above: 3.4.2 Spatial Distribution), the dis-

crepancy between machine learning and human-coded data is partially bigger (Bailey and 

Gatrell, 1995, Diggle, et al., 1995, Rowlingson and Diggle, 1993). 

3.4.5 Spatiotemporal Permutation Scan-statistics 

The K-function only provides a global measure of spatiotemporal similarity. This is why we 

run further local spatiotemporal cluster analysis in order to identify similar clustering in both 

datasets. These matching spatiotemporal clusters are statistically significant data-specific 

hotspots of violence, which again, indicate similar trends - irrespective to the data source and 

data gathering technique used. The spatiotemporal permutation Scan-statistics provides values 

of local clustering13 of violent events. The test statistic - and determining the cluster - is per-

formed with the software SaTScanTM. SaTScan creates a grid of centroids for the region and 

an infinite number of cylinders around each event location. The circular or ellipsoid radius of 

the cylinder reflects the portion of the events covered by the cluster; by default this does not 

exceed 50 percent of the total number of events. The height of the cylinder reflects time. 

SaTScan calculates the likelihood function, obtaining actual and expected number of 

events, considering all events within the cylinders, testing for the Complete Spatiotemporal 

Randomness (CSTR).14 Thereby the “most likely clusters” are identified and 999 Monte Carlo 

simulations are run, ranking/comparing the most likely clusters with randomly generated data 

via a Likelihood-ratio test. The Monte Carlo permutation procedure generates simulated da-
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tasets and envelopes of 95% confidence interval for assessing the significance of the spatio-

temporal permutation statistics. In a final step p-values for each cluster are calculated 

(Kulldorff and Information Management Services Inc., 2009, Kulldorff et al., 2005).15 

The result of the spatiotemporal permutation SaTScan-statistics is sobering. There is 

only one significant cluster within both datasets detectable (see Fig. 10). A reason for this 

result can be the small sample size. The available number of coded violent events is problem-

atic with regard to the reliability of the presented test statistics. As a rule of thumb there 

should be at least 30 events included into the calculations (here: 59 resp. 43 events). This rais-

es the question of the robustness of the results, because the statistical results given here can 

only serve descriptive purposes and thereby only reveal approximate tendencies within the 

event data. 

3.5.6 SQL-based Spatiotemporal Similarity Matching 

We conclude the spatiotemporal comparison by plotting matching results for illustrative rea-

sons on the map of Sierra Leone. This allows complement the cluster analysis, which did not 

allow robust statements, on the actual local comparativeness of the datasets. We match the 

datasets with the help of an SQL-query based upon defined spatial and temporal thresholds to 

cover, not only statistically significant, but all similarity and do not dependent on sample size. 

We run the SQL-query successively with an increment of one day and five kilometers, what 

led to the optimal Euclidian-distance-threshold of 20 km and a time window of 2 days. 

(Figure 10 about here) 

This narrow threshold reduces the number of matching events from 59 resp. 43 events to 23. 

The results show similarities but also substantial differences between conflict event data pro-

duced by the two presented approaches. The location and extent of the computed spatiotem-

poral SaTScan-clusters is also mapped in figure 10, as we can see the little resemblance be-
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tween the two datasets captured by the cluster analysis - whereas the total number of SQL-

based matching gives a very different picture. Notice that in figure 10 there are neither ma-

chine learning nor any human-coded space-time cluster around Port Loko, although the map 

shows a visual cluster based on the SQL-query-based matching events. The SQL-based simi-

larity matching yields a spatiotemporal intersection of 38.98 resp. 53.49 percent of the coded 

events. This again emphasizes the result of almost all temporal and spatial evaluations 

measures above, that the conflict data events generated manually and via ML are very much 

alike. 

Firstly the trends generated from the weekly aggregated, detrended and seasonally adjusted 

datasets seem to be similar. Secondly, the results of a cross-correlation analysis and the com-

puted Granger-causality-test are in line with this view. The purely spatial comparison suggests 

that both datasets show related violent events, but with a few exceptions. Statistically valid 

answers to this guesswork delivered by global and local spatiotemporal cluster analysis cor-

roborate this view. To meet robustness concerns due to the small sample size, the complimen-

tary SQL-based spatial-temporal comparison broadens the basis of the assessment and leads 

to the final conclusion that machine learning and human-coding produces - with restrictions - 

similar events. 

4. Discussion and Conclusion 

The creation of spatiotemporal disaggregated conflict event data opens up possibilities for 

unpacking parts of the black box of war, and to get a more detailed view on conflict dynam-

ics, actor constellations and thereby the processual nature of armed conflicts. This led to the 

growing importance of event data analysis in peace and conflict research that relies on precise 

and reliable data. Likewise the number of news sources and the speed of the information flow 

via modern ICT - even in remote areas and areas isolated by war - are rapidly increasing. We 
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propose to face this challenge by implementing a semi-automated machine learning event 

extraction approach. 

The main goal for machine learning is to increase the throughput of event extraction. 

An important accompanying effect is a possible increase in openness and flexibility. We im-

plemented an infrastructure that is based on open standards and stores all sources and their 

complete annotations which, copyright restrictions disregarded, allows for complete source 

transparency and makes ad hoc recoding possible at the same time. The entire method uses 

freely available libraries that create an adaptive approach to information extraction that can be 

applied to topics beyond conflict data generation as well. 

During our evaluation, it turned out that the costs of implementation are marginal in 

comparison to the huge amount of time and money necessary to manually create a high quali-

ty conflict database such as EDACS. The increase in flexibility and throughput clearly out-

weighs the costs of human-coding. The ML based approach increased the number of events 

generated by 50 percent when accounting for duplicates. The gross increase was 156 percent. 

When extrapolated to the entire first coding rounds of EDACS even a 50 percent increase 

would have saved about 1,000 hours of manual coding. An enhanced ML approach that auto-

matically detects duplicates would have saved more than 2,000 hours, about one year worth of 

manual work and equivalent of financial resources. 

A necessary condition for the applicability of this method in the context of research is 

to achieve a high degree of reliability. We evaluated this key element of data quality by per-

forming in-depth robustness check using manually generated data and assessed the spatiotem-

poral comparability of the machine learning dataset in contrast to the EDACS dataset which 

showed a high degree of similarity. The conducted trinity of temporal, spatial, and spatiotem-

poral comparison points to the fact that the machine learning dataset mirrors - to a large extent 

- the human-coded event data. 
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The discrepancies, which became apparent in the analysis, are marginal with respect to 

the spatiotemporal precision and revealed conflict trends. Still the comparability of other vari-

ables is yet unknown: we artificially restricted the comparison to key variables, information 

such as the aggregation of events, “fuzzy” event location or bias by the reporting agencies are 

all documented in the EDACS dataset but were not part of the evaluated ML data.  

We are confident that creating a holistic ML approach for event extraction, that incor-

porates these facts, is feasible and a necessary step to achieve a higher degree of quality of 

event data. But it would seem ill-advised to neglect the human aspect of machine-assisted 

coding procedures. The minimal training our coders received was sufficient for the narrow 

scope of this experiment. To achieve even better data quality, good training is necessary. Ide-

ally, well trained coders should be teamed up with a well adapted ML system that supports 

coders along each step with proposals for geocoding and ad hoc geo-information, context in-

formation such as conflict timelines, and real time duplicate detection to generate the best 

conflict event data possible.  

These advances in computer sciences enable us to push the envelope of what is possi-

ble. They can and should be upscaled to more languages and be applied to other sources as 

well, as it is the only possibility to actually quantitatively prove the reliability of current con-

flict event data. Possible approaches include mining of crowd-sourced (e.g. crisismappers.net) 

or crowd-seeded data (e.g. Voix de Kivu).16 Both approaches will have to answer data quality 

challenges outlined in this paper: crowd-sourcing’s participatory approach will have to tackle 

reliability issues as oversight is not inherent to the approach and robustness of reports have to 

be established. Crowd-seeding faces high initial cost as intensive planning and distribution is 

necessary to ensure that a representative sample of sources has been selected. Until next gen-

eration conflict event data projects are implemented on a significant scale, current event data 
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projects can adopt state-of-the-art technique as proposed in this paper to improve on their ex-

isting qualities. 
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Appendix 

 

 

FIGURE 1 Human-Coding Workflow and Process of Machine Assisted Coding. 
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FIGURE 2 The machine-assisted coding consists of three steps. First, the software highlights identified phrases in 

different colors, second, the user has added all missing actors that relate to the relevant incident, and lastly, the 

relation classifier identifies all phrases that relate to the casualties at the beginning of the sentence (dotted rec-

tangle). 

 

FIGURE 3 Document classification accuracy over time, beginning at session one. On average 43 percent were 

deemed as relevant by human coders in comparison to the about 10 percent baseline. 
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FIGURE 4 The number of machine-assisted extracted events per hour and session is shown, in comparison the 

baseline, the average manually coded events per hour. 

 

FIGURE 5 Weekly Time Series of Events of Machine Learning- and Human-Coded EDACS Data for Sierra Leo-

ne 1999. 
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FIGURE 6 Detrended Time Series of Events of Machine Learning- and Human-Coded EDACS Data for Sierra 

Leone 1999. 

 

FIGURE 7 Cross-Correlation (CCF) of Machine Learning- and Human-Coded Event Data for Sierra Leone 1999. 
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FIGURE 8 Spatial Distribution of Machine Learning- and Human-coded Event Data for Sierra Leone 1999. 
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FIGURE 9 Space-Time-K-function Graph of Machine Learning- and Human-Coded EDACS Data for Sierra 

Leone 1999. 
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FIGURE 10 SQL-query based similarity matching and Spatiotemporal Permutation SaTScan-statistics of Ma-

chine Learning- and Human-Coded Event Data for Sierra Leone 1999. 
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Endnotes 

                                                 
1 The project is part of the Collaborate Research Center (SFB) 700 “Governance in Areas of Limited State-

hood.”, funded by the German Research Foundation (DFG). We gratefully acknowledge the following people 

who have been involved in the data gathering process and, therefore, contributed to the success of our project: 

Michael Spies, Christian Bittner, Katharina Schoenes, Tim Wildemann, Michael Chucholowski. 

2 Mutual violence is defined in EDACS: “as armed interaction between two or more organized groups.” (Code-

book (EDACS, 2011: 4) 

3 One-sided violence is defined in EDACS: “as direct unilateral violence by organized groups aimed at civilian 

or military targets.” (EDACS, 2011: 4). 

4 The toponymic GEOnet Names Server (GNS) database is maintained by the US National Geospatial-

Intelligence Agency (NGA) and provides location names and coordinates in the World Geodetic System 1984 

(WGS 84) on a global level (NGA, 2011) GNS provides an extensive settlement dataset that is easily accessible 

at no charge. 

5 EDACS bias, buffering, and overall coding rules and procedures are described in the Codebook < 

www.conflict-data.org> (online beginning of May 2012).  

6 A more detailed description of the dataset can be found in the download section of our website < www.conflict-

data.org> (online beginning of May 2012). 

7 Both decision trees and the meta-classifier AdaBoost are both part of Carnegie Mellon’s MinorThird package 

(Cohen, 2004), the naive Bayes classifier is from LingPipe’s natural language processing (NLP) libraries 

(Carpenter, 2010) <http://alias-i.com/lingpipe/>, last accessed 2012/03/22.  

8 We use LingPipe’s commercial implementation due to their high encapsulation and decent documentation, 

which is free for research use (Carpenter, 2010). 

9 The f-score is most often defined as the harmonic mean of precision – defined as the ratio of relevant items 

retrieved and all retrieved items – and recall – defined as the ratio of relevant items retrieved and all relevant 

items (Manning et al., 2008: 156) 

10 Events lasting more than 30 days are supposed to be aggregated, but this proceeding is no guarantee 

eliminating a bias caused by event-aggregates, rather an arbitrary threshold to minimize possible biases. 

11 The values are smoothed via a locally weighted polynomial-regression (10-procent-window). The lowess-

function (Cleveland, 1981) in the R-package {stats} has been applied for that. 

12 The cross-correlation function estimates the degree to which two univariate time.series correlate. For calcula-

tion we use the ccf-function (Venables and Ripley, 2002) in the R package {stats}. 
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13 A comparative discussion of different space-time-clustering methods is provided by (Norström et al., 2000). 

They make a case for Kulldorffs Scan-Statistics because other test options like for instance the Knox-test needs 

space and time thresholds; furthermore Knox-test and the Jacquez-k-nearest-neighbours-test assume that popula-

tion size does not change over time, whereas Kulldorffs Scan-Statistics can accommodate confounding covari-

ates like population size (Norström, et al., 2000). 

14 Complete Spatiotemporal Randomness (CSTR) implies that there is no stochastic process present in space as 

well as time (see e.g. Cox and Isham, 1980, Diggle, 2003). 

15 We search for high rates of event clustering, set the parameters for the cluster analysis to 35 percent of the 

population at risk, and a temporal window of 15 percent of the study period. We further use a circular spatial 

window shape, aggregate temporally by seven days, and set the temporal cluster size to one day. Finally we run 

999 Monte Carlo replications. 

16 Crowd sourcing and crowd seeding are both participative data gathering techniques. Examples for such are: 

crowd sourcing: International Network of Crisis Mappers (crisismappers.net), crowd seeding Voix des Kivus, 

latter is conducted by staff of the Columbia University in Eastern Congo: <http://cu-

csds.org/wpcontent/uploads/2009/10/Voix-des-Kivus-Leaflet.pdf>. 


